Перевод: с русского на все языки

со всех языков на русский

operating temperature difference

  • 1 рабочая разность температур

    1) Construction: effective temperature difference, operating temperature difference (теплоносителя, рабочей среды), temperature supply differential (приточного и внутреннего воздуха)
    2) Makarov: operative temperature difference (теплоносителя, рабочей среды)

    Универсальный русско-английский словарь > рабочая разность температур

  • 2 режим

    ( работы) behavior, condition, duty, operation, mode, performance, run, use, process, regime, schedule, state
    * * *
    режи́м м.
    1. regime, condition; вчт. operation, mode
    включа́ть режи́м ( работы) — turn on a condition
    выключа́ть [снима́ть] режи́м ( работы) — remove a condition
    переводи́ть в режи́м, напр. пе́редачи радио — place in, e. g., the TRANSMIT condition
    переходи́ть в режи́м ре́верса — go into reverse (operation)
    переходи́ть с, напр. одного́ режи́ма управле́ния на друго́й — change between, e. g., control modes
    рабо́тать в режи́ме, бли́зком к преде́льному [крити́ческому] — be in marginal operation
    авари́йный режи́м — emergency operation
    автоколеба́тельный режи́м рад., элк.free-running (operation)
    автоно́мный режи́м — off-line operation, off-line mode, off-line condition
    рабо́тать в автоно́мном режи́ме — operate off-line
    режи́м авторота́ции ав. — autorotation [windmilling] regime
    акти́вный режи́м ( транзистора) — active region
    ба́зисный режи́м ( в энергетике) — base load operation
    режи́м больши́х сигна́лов радио, элк.large-signal operation
    бу́ферный режи́м ( аккумуляторной батареи) — floating service
    режи́м бы́стрых электро́нов тлв. — high-velocity scanning, high-velocity-beam operation
    режи́м ва́рки цел.-бум.cooking condition
    взлё́тный режи́м — take-off regime
    режи́м висе́ния ав. — hovering, hover mode
    вихрево́й режи́м — eddy flow
    во́дный режи́м — water regime, hydrolycity
    гаранти́йный режи́м — warranted performance, warranted condition
    режи́м гига́нтских колеба́ний — giant oscillations
    режи́м горе́ния, детонацио́нный — knocking combustion
    режи́м горе́ния, кинети́ческий — kinetic combustion
    режи́м движе́ния жи́дкости, напо́рный — forced flow
    режи́м движе́ния жи́дкости, поршнево́й — plug flow
    режи́м движе́ния жи́дкости, пузы́рчатый — bubble flow
    режи́м движе́ния жи́дкости, расслоё́нный — stratified flow
    режи́м заполне́ния ( водохранилища ГЭС) — rate of inflow
    режи́м заря́да ( аккумуляторной батареи) — charging rate
    режи́м заря́да, коне́чный — finishing rate
    режи́м заря́д — разря́д ( аккумуляторной батареи) — cycle service
    испо́льзовать батаре́ю в режи́ме заря́д — разря́д — operate a battery on cycle service
    и́мпульсный режи́м — pulsed operation
    режи́м кипе́ния — boiling condition, boiling regime
    режи́м кипе́ния, плё́ночный — film boiling
    режи́м кипе́ния, пузы́рчатый — nucleate boiling
    кре́йсерский режи́м — cruising regime, cruising mode, cruising conditions
    крити́ческий режи́м — criticality, critical conditions
    режи́м ма́лого га́за, земно́го ав.ground idling conditions
    режи́м ма́лых сигна́лов — small-signal condition
    режи́м ме́дленных электро́нов тлв. — low-velocity scanning, low-velocity-beam operation
    многомо́довый режи́м — multimoding, multimode operation
    режи́м модуля́ции добро́тности — Q-spoiled [Q-switched] mode
    режи́м молча́ния ( работы усилителя) — no-signal condition, no-signal state
    монои́мпульсный режи́м — giant oscillations
    режи́м нагру́зки — under-load operation
    надкрити́ческий режи́м ( ядерного реактора) — supercriticality
    напряжё́нный режи́м — heavy duty
    режи́м незатуха́ющих колеба́ний — CW mode
    ненорма́льный режи́м — abnormal [defective, faulty] condition
    нерасчё́тный режи́м — off-design condition
    нестациона́рный режи́м — unsteady condition
    номина́льный режи́м — design condition
    режи́м обедне́ния ( транзистора) — depletion mode
    режи́м обжа́тий метал.draughting schedule
    режи́м обогаще́ния ( транзистора) — enhancement mode
    режи́м ожида́ния ав.holding pattern
    выполня́ть полё́т в режи́ме ожида́ния — fly the holding pattern
    оконе́чный режи́м ( в радиорелейной связи) — terminal operation
    операти́вный режи́м вчт.on-line operation
    режи́м остано́вки — shutdown condition
    режи́м отка́чки — exhaust schedule
    режи́м переда́чи радиоtransmit condition
    режи́м переключе́ния добро́тности — Q-spoiled mode
    перехо́дный режи́м — transient condition
    периоди́ческий режи́м — periodic duty
    пи́ковый режи́м — peaking operation
    режи́м пласта́, водонапо́рный нефт.water drive
    пласт рабо́тает в водонапо́рном режи́ме — the oil pool produces [operates] under water drive
    режи́м пласта́ га́зовой ша́пки нефт.gas-cap drive
    пласт рабо́тает в режи́ме га́зовой ша́пки — the oil pool produces [operates] under gas-cap drive
    режи́м пласта́, гравитацио́нный нефт.gravity drainage
    пласт рабо́тает в гравитацио́нном режи́ме — the oil pool produces [operates] under gravity drainage
    режи́м пласта́ расшире́ния га́за нефт.gas-expansion drive
    пласт рабо́тает в режи́ме расшире́ния га́за — the oil pool produces [operates] under gas-expansion drive
    режи́м поко́я — quiescent conditions
    режи́м полё́та (напр. по маршруту) — regime of flight, flight condition (e. g., cruise, climb, or descent)
    режи́м по́лной нагру́зки — full-load conditions
    пони́женный режи́м радиоreduced power conditions
    ла́мпа рабо́тает на пони́женном режи́ме — the tube is under-run
    переда́тчик рабо́тает на пони́женном режи́ме — the transmitter operates at reduced power
    режи́м пото́ка — flow condition, flow regime, flow pattern
    режи́м приё́ма радиоreceive condition
    режи́м прогре́ва — warm-up
    режи́м проду́вки — blow-down
    режи́м прока́тки — rolling schedule
    промысло́вый режи́м — fishing procedure
    пусково́й режи́м — starting regime, start-up procedures
    режи́м рабо́ты — mode [type] of operation
    режи́м рабо́ты, беспи́чковый — nonspiking mode
    режи́м рабо́ты дви́гателей ав.power conditions
    режи́м рабо́ты на ра́зностной частоте́ ( параметрического усилителя) — difference mode
    режи́м рабо́ты на сумма́рной частоте́ ( параметрического усилителя) — sum mode
    режи́м рабо́ты, номина́льный — rated duty
    режи́м рабо́ты, переме́нный — varying duty
    режи́м рабо́ты, периоди́ческий — periodic duty
    режи́м рабо́ты, пи́чковый — spiking mode
    режи́м рабо́ты, повто́рно-кратковре́менный — intermittent cycle, intermittent duty
    режи́м рабо́ты, полуду́плексный — semi-duplex operation
    RBS режи́м рабо́ты самолё́тного отве́тчика — ATC radar-beacon system operation
    режи́м рабо́ты с мно́гими мо́дами — multimoding, multimode operation
    режи́м рабо́ты с мно́гими ти́пами колеба́ний — multimoding, multimode operation
    режи́м рабо́ты, холосто́й — no-load operation
    рабо́чий режи́м — (вид работы, функция) operating condition; ( совокупность параметров) operating variables, operating conditions
    режи́м приё́ма явля́ется норма́льным рабо́чим режи́мом радиоприё́мника — the receive condition is the normal operating conditions of the radio set
    режи́м разделе́ния вре́мени вчт.timesharing
    расчё́тный режи́м — design condition
    режи́мы ре́зания — cutting conditions, cutting speeds, feeds and depths
    скользя́щий режи́м автмт.zero-overshoot response
    режи́м сма́зки — relubrication intervals
    режи́м срабо́тки ( водохранилища) — rate of usage
    режи́м сто́ка — regime of run-off
    температу́рный режи́м — temperature [heat] condition
    температу́рный режи́м транзи́стора — temperature (rise) of a transistor
    теплофикацио́нный режи́м — heat-extraction mode
    режи́м тече́ния — flow (condition)
    типово́й режи́м — standard conditions
    транзи́тный режи́м свз.through-line operation
    тяжё́лый режи́м — heavy duty
    установи́вшийся режи́м — steady state, steady-state conditions
    режи́м холосто́го хо́да — no-load conditions
    чистоконденсацио́нный режи́м — nonextraction operation
    эксплуатацио́нный режи́м — operating [working] conditions
    * * *

    Русско-английский политехнический словарь > режим

  • 3 режим

    1. м. вчт. regime, condition; operation, mode
    2. м. conditions

    рабочий режим — operating condition; operating variables

    Синонимический ряд:
    1. порядок (сущ.) порядок; распорядок
    2. строй (сущ.) государственный строй; общественный строй; строй

    Русско-английский большой базовый словарь > режим

  • 4 тяга


    thrust
    (пропульсивное усилие, создаваемое реактивным двигателем или возд. винтом) — pushing or pulling force developed by aircraft engine or propeller
    - (проводки управления) — rod, link
    - (соединительный элемент)link
    -, асимметричная — asymmetric thrust
    для путевого управления (при пробеге) используются тормоза и асимметричная тяга двигателей. — the brakes and asymmetric thrust are used, if required, for directional control.
    - без впрыска водыdry thrust
    - без потерь (чистая)net thrust
    тяга гтд без учета потерь на сопротивление, создаваемое набегающим потоком, — the gross thrust of а jet engine minus the drag due to the momentum of the incoming air.
    -, бесфорсажная — non-afterburning thrust, dry thrust
    -, бесфорсажная, максимальная — dry (thrust) rating
    -, взлетная (дв.) — takeoff /liftoff/ thrust
    тяга, развиваемая двигателем на взлетном режиме его работы. — а thrust developed by an engine at takeoff power (setting).
    -, взлетная...кг — take-off thrust rated at...rq
    - винтового типа, раздвижная (напр., рулевой агрегат элерона) — screwjack link
    - винтового типа, электромеханическая, раздвижная (механизм рау) — electically-driven screwjack link
    - воздушного винтаpropeller thrust
    -, гарантированная (дв.) — guaranteed thrust
    - двигателяengine thrust
    - двигателя в условиях пониженной температуры — engine thrust on cold day /at low ambient temperature/
    - замка выпущенного положения (шасси)down-lock actuating rod
    -, избыточная (дв.) — excess thrust
    разность между располагаемой и потребной тягами для данного режима полета. — а difference between the thrust available and required for the given flight condition.
    -, клапанная (пд) — valve push rod
    -, компенсирующая — compensating rod
    - крестовины (хвостового винта)spider link
    - малого газа, обратная — reverse idle thrust
    - малого газа, прямая — forward idle thrust

    set the reverse levers to fwd idle position.
    - на большом газе — full throttle thrust /power/
    - на взлетном режиме — takeoff /liftoff/ thrust
    - на всех режимахthrust at any operating condition
    - на максимальном продолжительном режиме (дв.) — maximum continuous thrust
    остальные двигатели работают на мпр. — the remaining engines at the available maximum continuous power or thrust.
    - на стороне исправного шасси (при посадке на одну основную опору)reverse thrust on the good (landing) gear side
    - на установившемя режиме (дв.) — steady thrust
    -, нежелательная реверсивная — unwanted reverse thrust
    одиночный отказ или неисправность системы реверса тяги не должен создавать нежелательной реверсивной тяги на всех режимах, — no single failure or malfunction of the reversing system shall result in an unwanted reverse thrust under any operating conditions.
    -, номинальная (дв.) — rated thrust, normal standard rating thrust
    - (или мощность), номинальная (дв.) — rating rating is а designated limit of operating characteristics based on definite conditions.
    -, обратная, на малом газе — reverse idle thrust
    - несущего винта (создающая подъемную силу или учитываемая при копровых испытаниях) — rotor lift а rotor lift may be assumed to act through the center of gravity.
    - несущего винта при управлении общим и циклическим шагомrotor thrust
    - несущего винта (создающая вертикальное, поступательнoe движение вертолета, или его движение вправо, влево или назад) — (vertical, forward, right, left or aft) rotor thrust
    -, обратная — reverse /backward/ thrust
    тяга в направлении обратном направлению движения самолета. — thrust applied to а moving aircraft in а direction to орpose the aircraft motion.
    -, общая обратная (реверсивная) — otal reverse thrust
    общ. обратная тяга может составлять (50 %) от прямой тяги при одинаковой степени повышения давления двигателя. — the total reverse thrust is аррох. (50) percent of the forward thrust at the same epr.
    -, отрицательная (возд. винта при шаге около оо) — (propeller) drag
    -, отрицательная (реверсивная) — reverse thrust
    - подвески двигателя — engine mount/ support, suspension/ arm
    - полная прямаяfull forward thrust
    -, полная реверсивная — full reverse thrust
    использование полной реверсивной тяги допускается в течение...сек. — the reverser need only be operated at full reverse thrust for...
    -, пониженная (ниже расчетного номинала) — derated thrust
    -, потребная (дв.) — thrust required
    тяга, необходимая для выдерживания данного режима полета. — а thrust needed to maintain the set light condition.
    -, приведенная тяга двигателя, приведенная к стандартным атмосферным условиям (или мса) — thrust based upon standard atmosphere conditions, thrust in isa conditions
    -, пружинная — spring-loaded link/rod
    -, пружинная, загрузочная — feel spring link
    -, прямая (создающая поступательное движение) — forward thrust
    -, прямая (на режиме малого газа) — forward (idle) thrust
    -, прямая, на малом газе — forward idle thrust reverser levers at fwd idle.
    -, развязывающая, пружинная — spring-loaded override link
    для обеспечения возможности управления исправными секциями руля (элерона) при заклинивании одной из секций.
    -, располагаемая (дв.) — thrust available
    наибольшая тяга, развиваемая двигателем на данных высоте и скорости полета при работе на номинальном режиме (иногда на взлетном ипи форсированном). — the maximum thrust developed by the engine at the given altitude and speed with the engine operating at maximum continuous (or takeoff, augmented) power.
    -, распорная (шасси) (рис. 27) — lock strut
    -, расчетная — design /rated/ thrust
    - (или мощность), расчетная (дв.) — rating
    -, реактивная — jet thrust
    тяга, создаваемая турбореактивным двигателем. — the thrust of а jet engine.
    - реверса, эффективная — effective reverse thrust
    эффективная реверсивная тяга должна обеспечивать сокращение дистанции торможения не менее чем на 10%. — reverse thrust is regarded as effective if its use results in а reduction in groundborne stopping distance of at least 10%.
    -, реверсивная (воздушного винта) — propeller reverse thrust
    -, реверсивная (двигателя) — engine reverse thrust
    -, реверсивная, создаваемая реверсированием потока воздуха за (передним) вентилятором — reverse thrust (obtained) from front fan cold steam airflow
    -, регулируемая (дв.) — variable thrust
    -, режимная — operating thrust
    -, режимная (полетная) — flight thrust
    -, регулируемая (проводка управления) — djustable control rod
    - с вспрыскам водыwet thrust
    - с вспрыскам воды при взлете — wet takeoff thrust turn off water injection pumps after 2 minutes of wet takeaff thrust.
    - сервопривода (звено сервосистемы)servo link
    -, силовая — drive rod
    - синхронизации закрылковflap interconnection rod
    -, соединительная — link
    -, статическая (дв.) — static thrust
    тяга, развиваемая двигателем на земле (на месте). — а thrust developed by eпgine on the ground (at rest).
    - статическая, взлетная (на уровне моря, в условиях стандартной атмосферы) — static takeoff thrust (at sea level, standard conditions)
    - створки реверсивного устройства, силовая — thrust reverser bucket drive /linkage, actuator/ rod
    - створки шасси — landing gear door drive /linkage, actuator/ rod
    - страгивания (ла)break-away thrust
    -, суммарная (двигателей) — total/ powerplant/ thrust
    - толкателя клапана (дв.) — valve tappet push rod
    -, тормозная (компенсирующая) — brake compensating rod
    -, удельная (дв.) — specific thrust
    тяга, развиваемая двигателем и отнесенная к секундному весовому расходу воздуха в нем.
    - управленияcontrol rod
    - управления общим шагом (несущего винта)(rotor) collective pitch control rod
    - управления, раздвижная, — screwjack link
    - управления створкой шасси — landing gear door linkage/ drive, actuator/ rod
    - управления циклическим шагом (несущего винта)(rotor) cyclic pitch control rod
    - управления шагом (хвостового или несущего винта)(rotor) pitch control rod
    -, фактическая (полученная) — actual /observed/ thrust
    -, форсажная — reheat/ afterburning/ thrust
    -, форсированная (усиленная) — augmented thrust
    -, чистая — net thrust
    тяга без потерь на преодоление сопротивления, создаваемого набегающим потоком. — the gross thrust of a jet спgine minus the drag due to the momentum of the incoming air.
    -, эффективная — effective thrust
    запас т. — thrust reserve
    избыток т. — margin of engine thrust
    избыток т. над сопротивлением — thrust/drag margin
    килограмм на килограмм т. в час (кг/кг тяги/час) — kg/kg thrust/hr
    падение т. — thrust dacay
    форсирование т. — thrust augmentation
    центр т. — thrust axis
    восстанавливать т. — regain thrust
    работать на прямой (обратной) т. (дв.) — operate at forward (reverse) thrust
    развивать (создавать) т. — develop thrust
    реверсировать т. — reverse thrust
    форсировать т. — augment thrust

    Русско-английский сборник авиационно-технических терминов > тяга

  • 5 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 6 клапан


    valve
    - аварийного останова, (электромагнитный) (двигателя) — emergency fuel shut-off (solenoid) valve
    - аварийного сброса двления (гермокабины)pressure relief valve
    - аварийного слива топлива — fuel dump /jettison/ valve
    -, автоматический — automatic valve, automaticallyactuated /operated/ valve
    - блокировки (напр., системы реверса) — interlock valve
    клапан срабатывает при neремещении створок реверса в положение реверсивной тяги. — the valve is mechanically actuated by reverser buckets as they move into reverse position.
    -, боковой (ранца парашюта) — side flap
    -, бортовой (нагнетания или всасывания, гидросистемы) — external (hydraulic pressure or suction) valve
    - вдоха (кислородной маски)inhalation valve
    -, вентиляционный — vent valve
    - впрыскаinjection valve
    - впуска (пд)intake valve
    клапан, открывающийся для впуска рабочей смеси в ципиндр поршневого двигателя — the inlet valve which permits the inflow of fuel-air mixture to the cylinder or cylinders of an internal combustion engine.
    -, вспомогательный — sub-valve
    - встречной заправки маслом (двигателя через сливной штуцер)oil pressure filling valve
    - выдоха (кислородной маски)exhalation valve
    - выключения (поврежденной части тормозной магистрали) (см. дозатор) — lockout valve
    -, выпускной (пд) — exhaust valve
    клапан, открывающийся для отвода выхлопных газов, продуктов сгорания после рабочего хода поршневого двигателя. — the outlet valve which permits the burnt gases to be discharged from the cylinder of an internal combustion engine after the power stroke has been completed.
    - выпускной (системы кондиционирования воздуха) — outflow valve, pressure relief valve

    operate the outflow valve manual control switch to increase cabin altitude.
    - высотного корректора (пд)mixture-control valve
    -, выхлопной — exhaust valve
    -, главный (ранца парашюта) — main flap
    -, грибовидный — mushroom valve
    - давления (топливных контуров двигателя)pressurizing valve
    - (-) датчик (напр. давления) — (pressure) sensing valve

    the piston is sensitive to pressure difference across the sensing valve.
    - двойного действияdouble-acting valve
    - двойного действия (у главных клапанов заправки топливом)two-way valve
    - двойного действия, разгрузочный — double-acting pressure relief valve
    -, двухпозиционный — two-position valve
    -, двухсторонний — dual valve
    -, двухступенчатый — two-stage valve
    -, двухходовой — two-way valve
    -, демпфирующий — damping valve
    -, дифференциальный (носаca-регулятора) — proportional /proportioning/ valve
    -, дозирующий — (flow) metering valve
    - дренажа (слива) топливного контура — fuel manifold drain /dump/ valve
    - дренажирования (стравливания воздуха при заполнении топливной системы двигателя) — bleeder valve
    -, дренажный (воздушный) — vent valve
    -, дренажный (сливной) — drain valve
    -, дроссельный — throttle valve
    -, дроссельный (в отличие от дроссельного крана) — throttling valve
    -, дроссельный, вспомогатепьный (насоса высокого давления топлива) — auxiliary throttling valve
    - закрытvalve closed (valve clsd)
    -, заливной (заливочный, пд) — priming valve
    -, запорный — shut-oft valve
    -, запорный (прекращающий подачу топлива в основной топливный контур при уменьшенном расходе топлива, напр., при запуске) — pressurizing valve the valve prevents fuel from entering and pressurizing the main manifold when fuel flow is low (as during engine starting).
    - заправка водобакаwater tank fill valve
    -, заправочный — fill valve
    -, заправочный (бака) — tank fill valve
    -, заправочный (топливный) — fueling valve, fuel entry valve
    -, запуска (возд. стартера) — engine air start valve
    - запуска двигателя (воздушный)engine start valve
    установлен в трубопроводе подвода воздуха к воздушному стартеру. — the valve is located in the air duct leading from the aircraft pneumatic manifold to the starter.
    -, зарядный — charging valve
    -, зарядный (амортизатора шасси) (рис. 31) — shock strut (air) charging valve
    -, зарядный (пневматика колеса) (рис. 35) — tire inflation valve
    -, золотниковый — slide valve
    -, игольчатый — needle valve
    -, исполнительный — servo valve
    -, кинетический — kinetic valve
    -, комбинированный — combined valve
    -, лепестковый (кислородной маски) — flap valve, flapper
    -, контрольный — check valve
    -, магистральный (системы заправки топливом) — (cross-ship) isolation valve
    - малого газаidling valve
    - минимального расхода (насоса-регулятора топлива)minimum flow valve
    -, нагнетательный pressure — valve
    - нагнетанияpressure valve
    -, нагнетающий — pressure valve
    -, обеспечивающий подачу давления в к-л. магистраль — pressurizing valve
    - обратного торможения (амортстойки шасси) (рис. 29) — snubber valve
    -, обратный — check valve (сша), non-return valve (англ.)
    клапан, устанавливаемый в трубопроводах или арматурах и пропускающий жидкость или газ только в одном заданном направлении, закрывается при изменении направления движения жидкости. — а valve fitted in pipes and fittings.that automatically seals the return passage of a fluid or а gas because of fluid pressure (back pressure) acting on the valve, i.e., it stops (or checks) reverse flow.
    -, обратный калиброванный — orifice check valve
    -, общий (системы заправки топливом) — (cross-ship) isolation valve
    - ограничения давления пускового топливаstarting fuel pressure limiting valve
    - ограничения предельных оборотов (двигателя) — maximum speed limiting /limiter/ valve
    - ограничения предельных оборотов ротора квд — hp rotor /shaft/ speed limiter valve
    - ограничения расхода (игольчатый)flow restrictor (needle) valve
    - останова (гтд) — hp fuel shut-off valve /cock/
    - отбора воздуха от компрессораcompressor air bleed valve
    - отбора воздуха за квдhp compressor air bleed valve
    -, отжимной (разъемный) — disconnect /non-spill/ valve
    - открыт (трафарет)valve open(ed)
    - отрицательных перегрузокnegative acceleration valve
    -, отсечный — cutoff /cutout, shutoff/ valve
    - перезаливкиoverflow valve
    -, переключающий — selector valve
    - переключения, челночный (гидросистем бустера) — selector shuttle valve
    - перелома характеристики приемистостиacceleration time control valve
    - перепада (в топливном регуляторе)differential pressure regulator valve
    - перепуска (обводной) — bypass /by-pass/ valve
    - перепуска (из одной полости в другую, напр. для выравнивания давления) — spill valve
    - перепуска воздуха (из компрессора) при запуске двигателя клапаны открыты, при достижении определенных оборотов - закрываются, и при снижении режима - открываются. (рис. 49) — compressor bleed valve the compressor bleed valve has two positions: fully open (during starting and acceleration) and fully closed (during normal operating thrust), during deceleration the valve opens.
    - перепуска воздуха (с входа кнд на выход квд) — p1/p3 air transfer valve
    - перепуска воздуха за v и vi ступенями квдhp compressor stage 5 and 6 bleed valve
    - перепуска, поворотный (компрессора гтд) — rotary-action compressor bleed valve
    -, перепускной (поршневого компрессора) — transfer valve
    -, перепускной (с термостатическим управлением) — (thermostatically controlled) by-pass valve
    -, перепускной (топливомасляного радиатора) — (oil cooler) pressure differential by-pass valve
    - подачи топлива при отрицательных перегрузках (в перевернутом полете)inverted-flight fuel valve
    - поддавливанияpressurizing valve
    - поддержания (постоянного перепада давления (на дроссельном клапане - дозирующей игле) — proportional /proportioning/ valve. regulates automatically pressure diffrential across throttle valve.
    - подпитки (в гидро- или маcляной системе)replenishment valve
    - подпитки (в системе топливной автоматики двигателя)enrichment valve
    -, подпиточный (в гидросистемe) — replenishment valve
    -, подпорный (в гидравлической системе уборки и выпуска шасси) (см. усилитель-мультипликатор) — intensifier
    -, подпружиненный на закрытие — valve spring-loaded into closed position
    -, подпружиненный на открытие — valve spring-loaded into open position
    - подсоса воздуха кислороднаго прибораoxygen regulator diluter valve
    -, подтормаживания (колес шасси после уборки) — wheel stopping valve то stop the lg wheel rotation after retraction.
    - полной срезки топлива (двиг.) — fuel cutoff /shut-off/ valve
    - поплавковой камеры, игольчатый — float needle valve
    -, поплавковый — float valve
    - последовательного включенияsequence valve
    - постоянного давления (кпд, насоса-регулятора или кта) — constant pressure valve
    - постоянного (пропорционального) перепада давления (насоса-регулятора или кта) — proportional /proportioning/ valve
    клапан поддерживает постаянное давление в каналах подвода топлива к дозирующей игле. работает совместно с высотным корректором. — the proportional valve (works together with an altitude sensing unit) regulates automatically the pressure differentiaf across the throttle valve.
    - предельного давленияmaximum pressure valve
    -, предохранительный — safety valve
    -, предохранительный (перепускной) — by-pass valve
    -, предохранительный (предотвращающий возникновение отрицательного перепада в гермокабине) — reverse pressure differential relief valve. pressurized cabins must have reverse pressure differential relief valves to automatically prevent a negative pressure differential that would damage the structure.
    -, предохранительный (предохраняющий от превышения положительного перепада давлений в гермокабине) — positive pressure relief valve pressurized cabins must have pressure relief valves to automatically limit the positive pressure differential to a predetermined value.
    -, предохранительный (разгрузочный) — pressure relief valve
    -, предохранительный (регулятора давления гермокабины) — relief valve, pressure safety геlief valve
    -, предохранительный (ранца парашюта) — protector flap
    -, предохранительный, для вытяжного парашюта — pilot chute protector flap
    -, предохранительный, для вытяжного троса (парашюта) — ripcord protector flap
    - приемистости (двигателя)acceleration control valve
    - продувки (стравливания)(air) bleeder valve
    -, продувочный — blow-off valve
    - проливки маслосистемы (для стравливания воздуха при заполнении системы маслом) — (air) bleeder valve
    - пропорционального давления (постоянного перепада) — proportional /proportioning/ valve
    - пропорционального расходаproportional valve
    - противодавления (в топливном насосе-регуляторе)back pressure valve
    - противообпеденительного трубопровода, перекрывной — anti-icing shut-off valve (antiice valve)
    - противообледенительной системы (двигателя, лобового капота, крыла, оперения) — (engine, nose cowl, wing, сиpennage) anti-icing valve
    - пускового топлива (электромагнитный)(solenoid) starting fuel valve
    -, пусковой — starting valve
    - разгрузки насосаpump relief valve
    -, разгрузочный — relief valve
    -, разгрузочный (системы кондиционирования воздуха) — pressure relief valve pressurized cabin must have pressure relief valve to limit positive pressure differential.
    -, разгрузочный аварийный — emergency relief valve
    -, разгрузочный основной (в маслосистеме двигателя за фильтром) — (oil system) main pressure relief valve (located downstream of oil filter)
    -, разделительный (заправки) — isolating valve
    -, разделительный (межбаковый) — intertank valve
    -, разделительный (порционер — flow-ratio valve
    - разжижения масла (пд)oil-dilution valve
    -, разъемный (не допускающий утечки при отсоединении трубопровода под давлением) — disconnect valve, non-spill valve
    - ранца (парашюта)pack flap
    -, распределительный — distributor valve
    -, распределительный (гидроусилителя) — servo valve
    - регулированияcontrol valve
    - регулирования смесиmixture-control valve
    - регулирования степени повышения давления двигателем (насоса-регулятора)pressure ratio control valve
    -, регулировочный — control valve
    - регулятора повышенных оборотов, дозирующий — overspeed governor metering valve
    - регулятора пониженных оборотов, дозирующий — underspeed governor metering valve
    -, редукционный (редуктор) — (pressure) reducing valve
    клапан, понижающий подводимое давление и поддерживающий постоянное давление на выходе. — а pressure reducing valve in the pump outlet ensures that the predetermined outlet pressure is not exceeded.
    -, редукционный, кислородный (редуктор) — oxygen pressure reducer
    - режимный (термовоздушной противообледенительной системы) (срабатывает в зависимости от режима работы двигателей) — (hot air anti-icing) control valve
    - с полым штокомhollow-stem valve
    - с пружиной, действующей на закрытие — valve spring-loaded into closed position
    - с пружиной, действующей на открытие — valve spring-loaded into open position
    - сброса давленияpressure relief valve
    - сброса кислорода в атмосферуoxygen overboard discharge valve
    -, селекторный — selector valve
    - слива (дренажный)drain valve
    - слива (возврата жидкости из полости высокого в полость низкого давления) — return valve
    - слива (в насосе-регуляторе, для отвода топлива на вход насоса высокого давления) — spill valve operates as safety or relief valve.
    - слива топлива (для опорожления баков на земле) — defueling valve, fuel offload valve
    - слива топлива из коллектора — fuel manifold drain /dump/ valve
    - слива топлива из контуров форсунокfuel nozzle manifold drain valve
    -, сливной (возврата из полости высокого в полость низкого давления) — return valve return valve permits fluid to return from the power cylinder to the hydraulic tank.
    -, сливной (дренажный) — drain valve
    -, сливной (санузла) — waste valve
    - согласования последовательности срабатывания — sequence /sequencing/ valve
    - согласования последовательности срабатывания створок реверса вентилятора и основной тяги — fan cascade and primary thrust reverser buckets sequence valve
    согласования последовательности срабатывания створок реверсивного устройства — thrust reverser door /bucket/ sequence /sequencing/ valve
    -, согласующий (управляющий последовательностью срабатывания) — sequence /sequencing/ valve
    -, согласующий шасси (управляющей последовательностью срабатывания-открытия/закрытия створок шасси) — landing gear door operation sequence valve
    - спинки (ранца парашюта)pack pad flap
    - срезки топлива — fuel sflutoff /cutoff/ valve
    - стравливания воздуха (в маслоагрегате)air bleeder valve
    - стравливания воздуха (отвода)air discharge valve
    - стравливания давления (в баках при заправке топливом под давлением) — blow-off valve the valves prevent build-up of excessive pressures in tanks, when refuelling.
    -, стравливающий (давление из амортизатора шасси) — (shock strut) bleeder) valve
    -, тарельчатый — plate valve
    -, терморазгрузочный — thermal relief valve
    -, термостатический (топливомасляного агрегата) — fuel temperature regulator valve
    -, топливодозирующий — fuel metering valve
    -, торможения (амортизатора шасси) (рис. 29) — shock strut snubber valve
    - торможения обратного хода плавающего поршня (амортизатора шасси)floating piston recovery stroke snubber valve
    -, тормозной (тормоза колес) — brake control valve
    -, тормозов, разъемный (гидропроводки тормоза) — brake line disconnect valve
    -, торцовый (ранца парашюта) — end flap
    -, треугольный (ранца парашюта) — triangular flap
    -, угловой (ранца парашюта) — corner flap
    - управленияcontrol valve
    -, управляющий — control valve
    - ускоренного слива топлива из топливного коллектора (обычно срабатывает при остановке двигателя) — dump valve. an automatic valve which rapidly drains the fuel manifold when the fuel pressure falls below the predetermined valve.
    -, челночный — shuttle valve
    -, шариковый — ball valve
    -, шаровой — ball-type valve
    -, эпектровоздушный — electro-pneumatic valve
    -, электрогидравлический — electro-hydraulic valve
    -, электромагнитный — solenoid valve
    высота подъема к. — valve travel
    зависание к. — valve sticking
    заедание к. — valve sticking
    закрытие к. — valve closing
    открытие к. — valve opening
    перекрытие к. — valve lap
    подсос в к. — valve leaking
    отгибать к. (ранца) назад — fold (pack) flap back
    притирать к. — grind in /lap/ the valve
    расправлять к. (ранца) — straighten (pack) flap

    Русско-английский сборник авиационно-технических терминов > клапан

См. также в других словарях:

  • Temperature — This article is about the thermodynamic property. For other uses, see Temperature (disambiguation). A map of global long term monthly average surface air temperatures i …   Wikipedia

  • Temperature coefficient — The temperature coefficient is the relative change of a physical property when the temperature is changed by 1 K. In the following formula, let R be the physical property to be measured and T be the temperature at which the property is… …   Wikipedia

  • Thermodynamic temperature — is the absolute measure of temperature and is one of the principal parameters of thermodynamics. Thermodynamic temperature is an “absolute” scale because it is the measure of the fundamental property underlying temperature: its null or zero point …   Wikipedia

  • Low-temperature thermal desorption — NOTE: This article is largely taken verbatim from the EPA s How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites . cite web last = first = authorlink = coauthors = date = url = http://www.epa.gov/OUST/cat/lttd.htm… …   Wikipedia

  • Ocean thermal energy conversion — Temperature differences between the surface and 1000m depth in the oceans Ocean Thermal Energy Conversion (OTEC) uses the difference between cooler deep and warmer shallow or surface ocean waters to run a heat engine and produce useful work,… …   Wikipedia

  • Stirling engine — Alpha type Stirling engine. There are two cylinders. The expansion cylinder (red) is maintained at a high temperature while the compression cylinder (blue) is cooled. The passage between the two cylinders contains the regenerator …   Wikipedia

  • Glossary of fuel cell terms — The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but …   Wikipedia

  • Vacuum tube — This article is about the electronic device. For experiments in an evacuated pipe, see free fall. For the transport system, see pneumatic tube. Modern vacuum tubes, mostly miniature style In electronics, a vacuum tube, electron tube (in North… …   Wikipedia

  • Resistor — A typical axial lead resistor Type Passive Working principle Electrical resistance Invented Ge …   Wikipedia

  • radiation — radiational, adj. /ray dee ay sheuhn/, n. 1. Physics. a. the process in which energy is emitted as particles or waves. b. the complete process in which energy is emitted by one body, transmitted through an intervening medium or space, and… …   Universalium

  • Geophysical MASINT — is a branch of Measurement and Signature Intelligence (MASINT) that involves phenomena transmitted through the earth (ground, water, atmosphere) and manmade structures including emitted or reflected sounds, pressure waves, vibrations, and… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»